If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-49x+49=0
a = 8; b = -49; c = +49;
Δ = b2-4ac
Δ = -492-4·8·49
Δ = 833
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{833}=\sqrt{49*17}=\sqrt{49}*\sqrt{17}=7\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-49)-7\sqrt{17}}{2*8}=\frac{49-7\sqrt{17}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-49)+7\sqrt{17}}{2*8}=\frac{49+7\sqrt{17}}{16} $
| 8x+9x-4x=36+3 | | 8x^2-49x=49=0 | | 3(a+a)=19-5 | | 135+80+45+x=360 | | -7×-7=x | | 5n+7+8n=46 | | 8-5n+2=20 | | 2e-8=-17 | | 10+9j=6j-5 | | 18x+30=20x-5 | | 2x+3=15x | | 94=10(k+6)-(k+2) | | -6x+14+7x=6+x+8 | | 3(2-x)+6x=18 | | x=(2x+6) | | 1/2x+(x-46)+x+(x-35)=360 | | 0.5(0.5x-1)=-4.5 | | 9x+3=30x+2 | | 3}{4}(x-6)=12 | | -6x+14+7x=6 | | z-8z=9z-7-z | | s+3+1/2s+10=37 | | x=3-16 | | (w-3)15(w+7)=10(w+3)-(7w+5) | | x=|-3|-|-16| | | 35x+25x=4x+x | | 13m-5=1m-5 | | 3.2-4d=2.3d*3 | | 7/2x+1/2x=10+9/2x | | (1/3)q^2-18q+120=0 | | x=|-3|-|16| | | 4p-3=3p+12 |